Ensembling and Stacking
1.Ensemble result files
The most straightforward way is to ensemble existing predictions, ideal when teaming up.
model ensembling reduces errr rate and it works better when model predictions are low-correlated.
Classifiers
knn = KNeighborsClassifier(n_neighbors=1)
gnb = GaussianNB()
rf = RandomForestClassifier(random_state=1)
ada = AdaBoostClassifier(alpha=1)
nn = MLPClassifier(alpha=1)
svc1 = SVC(kernel="linear", C=0.025)
svc2 = SVC(gamma=2, C=1)
gp = GaussianProcessClassifier(1.0 * RBF(1.0))
tree = DecisionTreeClassifier(max_depth=5)
qda = QuadraticDiscriminantAnalysis()
KNeighborsClassifier | n_neighbors, weights, algorithm, leaf_size, metric, | |
---|---|---|
GaussianNB | priors | |
RandomForestClassifier | ||
AdaBoostClassifier | base_estimator, n_estimators, learning_rate | |
MLPClassifier | hidden_layer_sizes, activation, solver, alpha, batch_size, learning_rate | |
C-Support Vector Classification | C (penalty parameter), kernel | |
GaussianProcessClassifier | ||